
Chapter 4

Batch Python Scripting

Python scripting can be leveraged in two ways within ParaView. First,
Python scripts can automate the setup and execution of visualizations by
performing the same actions as a user at the GUI. Second, Python scripts
can be run inside pipeline objects, thereby performing parallel visualization
algorithms. This chapter describes the first mode, batch scripting for au-
tomating the visualization.

Batch scripting is a good way to automate mundane or repetitive tasks,
but it is also a critical component when using ParaView in situations
where the GUI is undesired or unavailable. The automation of Python
scripts allows you to leverage ParaView as a scalable parallel post-processing
framework. We are also leveraging Python scripting to establish in situ
computation within simulation code. (ParaView supports an in situ li-
brary called Catalyst, which is not documented in this tutorial. See
http://catalyst.paraview.org/ for more information on Catalyst).

This tutorial gives only a brief introduction to Python scripting. The
most recent and complete documentation is kept on the ParaView Wiki.

http://www.paraview.org/Wiki/ParaView/Python Scripting

4.1 Starting the Python Interpreter

There are many ways to invoke the Python interpreter. The method you
use depends on how you are using the scripting. The easiest way to get a
python interpreter, and the method we use in this tutorial, is to select Tools
→ Python Shell from the menu. This will bring up a dialog box containing

97

http://catalyst.paraview.org/
http://www.paraview.org/Wiki/ParaView/Python_Scripting

98 CHAPTER 4. BATCH PYTHON SCRIPTING

controls for ParaView’s Python shell. This is the Python interpreter, where
you directly control ParaView via the interface described below.

If you are most interested in getting started on writing scripts, feel free
to skip to the next section past the discussion of the other ways to invoke
scripting.

ParaView comes with two command line programs that execute Python
scripts: pvpython and pvbatch. They are similar to the python executable
that comes with Python distributions in that they accept Python scripts
either from the command line or from a file and they feed the scripts to the
Python interpreter.

The difference between pvpython and pvbatch is subtle and has to do
with the way they establish the visualization service. pvpython is roughly
equivalent to the paraview client GUI with the GUI replaced with the
Python interpreter. It is a serial application that connects to a ParaView
server (which can be either builtin or remote). pvbatch is roughly equivalent
to pvserver except that commands are taken from a Python script rather
than from a socket connection to a ParaView client. It is a parallel applica-
tion that can be launched with mpirun (assuming it was compiled with MPI),
but it cannot connect to another server; it is its own server. In general, you
should use pvpython if you will be using the interpreter interactively and
pvbatch if you are running in parallel.

It is also possible to use the ParaView Python modules from programs
outside of ParaView. This can be done by pointing the PYTHONPATH environ-
ment variable to the location of the ParaView libraries and Python modules
and pointing the LD LIBRARY PATH (on Unix/Linux/Mac) or PATH (on Win-
dows) environment variable to the ParaView libraries. Running the Python
script this way allows you to take advantage of third-party applications such
as IDLE. For more information on setting up your environment, consult the
ParaView Wiki.

4.2. TRACING PARAVIEW STATE 99

4.2 Tracing ParaView State

Before diving into the depths of the Python scripting features, let us take
a moment to explore the automated facilities for creating Python scripts.
The ParaView GUI’s Python Trace feature allows one to very easily create
Python scripts for many common tasks. To use Trace, one simply begins a
trace recording via Start Trace, found in the Tools Menu, and ends a trace
recording via Stop Trace, also found in the Tools Menu. This produces a
Python script that reconstructs the actions taken in the GUI. That script
contains the same set of operations that we are about to describe. As such,
Trace recordings are a good resource when you are trying to figure out how
to do some action via the Python interface, and conversely the following
descriptions will help in understanding the contents of any given Trace script.

Exercise 4.1: Creating a Python Script Trace

If you have been following an exercise in a previous section, now is a good
time to reset ParaView. The easiest way to do this is to press the button.

1. Click the Start Trace in the Tool menu.

2. Build a simple pipeline in the main ParaView GUI. For example, create
a sphere source and then clip it.

3. Click Stop Trace in the Tools meu.

4. An editing window will open populated with a Python script that repli-
cates the operations you just made.

Even if you have not been exposed to ParaView’s Python bindings, the
commands being performed in the traced script should be familiar. Once
saved to your hard drive, you can of course edit the script with your favorite
editor. The final script can be interpreted by the pvpython or pvbatch

program for totally automated visualization. It is also possible to run this
script in the GUI. The Python Shell dialog has a Run Script button that
invokes a saved script. �

It should be noted that there is also a way to capture the current Para-
View state as a Python script without tracing actions. Simply select Save
State... from the ParaView File menu and choose to save as a Python .py

100 CHAPTER 4. BATCH PYTHON SCRIPTING

state file (as opposed to a ParaView .pvsm state file). We will not have an ex-
ercise on state Python scripts, but suffice it to say they can be used in much
the same way as traced Python scripts. You are welcome to experiment with
this feature as you like.

4.3 Macros

A simple but powerful way to customize the behavior of ParaView is to add
your Python script as a macro. A macro is simply an automated script that
can be invoked through its button in a toolbar or its entry in the menu bar.
Any Python script can be assigned to a macro.

Exercise 4.2: Adding a Macro

This exercise is a continuation of Exercise 4.1. You will need to finish that
exercise before beginning this one. You should have the editing window
containing the Python script created in Exercise 4.1 open.

1. In the menu bar (of the editing window), select File→ Save As Macro....

2. Choose a descriptive name for the macro file and save it in the default
directory provided by the browser. You should now see your macro on
the Macro toolbar at the top of the ParaView GUI.

At this point, you should now see your macro added to the toolbars. By
default, macro toolbar buttons are placed in the middle row all the way to the
left. If you are short on space in your GUI, you may need to move toolbars
around to see it. You will also see that your macro has been added to the
Macros menu.

3. Close the Python editor window.

4. Delete the pipeline you have created by either selecting Edit → Delete
All from the menu or pressing the button.

5. Activate your macro by clicking on the toolbar button or selecting it
in the Macros menu.

4.4. CREATING A PIPELINE 101

In this example our macro created something from scratch. This is helpful
if you often load some data in the same way every time. You can also trace
the creation of filters that are applied to existing data. A macro from a trace
of this nature allows you to automate the same visualization on different
data. �

4.4 Creating a Pipeline

As described in the previous two sections, the ParaView GUI’s Python Trace
feature provides a simple mechanism to create scripts. In this section we
will begin to describe the basic bindings for ParaView scripting. This is
important information in building Python scripts, but you can always fall
back on producing traces with the GUI.

The first thing any ParaView Python script must do is load the para-

view.simple module. This is done by invoking

from paraview.simple import *

In general, this command needs to be invoked at the beginning of any Para-
View batch Python script. This command is automatically invoked for you
when you bring up the scripting dialog in ParaView, but you must add it
yourself when using the Python interpreter in other programs (including
pvpython and pvbatch).

The paraview.simple module defines a function for every source, reader,
filter, and writer defined in ParaView. The function will be the same name
as shown in the GUI menus with spaces and special characters removed. For
example, the Sphere function corresponds to Sources → Sphere in the GUI
and the PlotOverLine function corresponds to Filters → Data Analysis →
Plot Over Line. Each function creates a pipeline object, which will show up
in the pipeline browser (with the exception of writers), and returns an object
that is a proxy that can be used to query and manipulate the properties of
that pipeline object.

There are also several other functions in the paraview.simple module
that perform other manipulations. For example, the pair of functions Show

and Hide turn on and off, respectively, the visibility of a pipeline object in a
view. The Render function causes a view to be redrawn.

102 CHAPTER 4. BATCH PYTHON SCRIPTING

Exercise 4.3: Creating and Showing a Source

If you have been following an exercise in a previous section, now is a good
time to reset ParaView. The easiest way to do this is to press the button.

If you have not already done so, open the Python shell in the ParaView
GUI by selecting Tools → Python Shell from the menu. You will notice that

from paraview.simple import *

has been added for you.
Create and show a Sphere source by typing the following in the Python

shell.

sphere = Sphere()

Show()

Render()

The Sphere command creates a sphere pipeline object. Once it is exe-
cuted you will see an item in the pipeline browser created. We save a proxy
to the pipeline object in the variable sphere. We are not using this variable
(yet), but it is good practice to save references to your pipeline objects.

The subsequent Show command turns on visibility of this object in the
view, and the subsequent Render causes the results to be seen. At this point
you can interact directly with the GUI again. Try changing the camera angle
in the view with the mouse. �

Exercise 4.4: Creating and Showing a Filter

Creating filters is almost identical to creating sources. By default, the last
created pipeline object will be set as the input to the newly created filter,
much like when creating filters in the GUI.

This exercise is a continuation of Exercise 4.3. You will need to finish
that exercise before beginning this one.

Type in the following script in the Python shell that hides the sphere and
then adds the shrink filter to the sphere and shows that.

Hide()

shrink = Shrink()

Show()

Render()

4.4. CREATING A PIPELINE 103

The sphere should be replaced with the output of the Shrink filter, which
makes all of the polygons smaller to give the mesh an exploded type of
appearance. �

So far as we have built pipelines we have accepted the default parameters
for the pipeline objects. As we have seen in the exercises of Chapter 2, it is
common to have to modify the parameters of the objects using the properties
panel.

In Python scripting, we use the proxy returned from the creation func-
tions to manipulate the pipeline objects. These proxies are in fact Python
objects with class attributes that correspond to the same properties you set
in the properties panel. They have the same names as those in the properties
panel with spaces and other illegal characters removed. You can set them by
simply assigning them a value.

Exercise 4.5: Changing Pipeline Object Properties

This exercise is a continuation of Exercises 4.3 and 4.4. You will need to
finish those exercises before beginning this one.

Recall that we have so far created two Python variables, sphere and
shrink, that are proxies to the corresponding pipeline objects. First, enter
the following command into the Python shell to get the current value of the
Theta Resolution property of the sphere.

print sphere.ThetaResolution

The Python interpreter should respond with the result 8. (Note that
using the print keyword, which instructs Python to output the arguments
to standard out, is superfluous here as the Python shell will output the result
of any command anyway.) Let us double the number of polygons around the
equator of the sphere by changing this property.

sphere.ThetaResolution = 16

Render()

The shrink filter has only one property, Shrink Factor. We can adjust this
factor to make the size of the polygons larger or smaller. Let us change the
factor to make the polygons smaller.

104 CHAPTER 4. BATCH PYTHON SCRIPTING

shrink.ShrinkFactor = 0.25

Render()

You may have noticed that as you type in Python commands to change
the pipeline object properties, the GUI in the properties panel updates ac-
cordingly. �

So far we have created only non-branching pipelines. This is a simple and
common case and, like many other things in the paraview.simple module,
is designed to minimize the amount of work for the simple and common case
but also provide a clear path to the more complicated cases. As we have
built the non-branching pipeline, ParaView has automatically connected the
filter input to the previously created object so that the script reads like the
sequence of operations it is. However, if the pipeline has branching, we need
to be more specific about the filter inputs.

Exercise 4.6: Branching Pipelines

This exercise is a continuation of Exercises 4.3 through 4.5. You will need
to finish Exercises 4.3 and 4.4 before beginning this one (Exercise 4.5 is
optional).

Recall that we have so far created two Python variables, sphere and
shrink, that are proxies to the corresponding pipeline objects. We will now
add a second filter to the sphere source that will extract the wireframe from
it. Enter the following in the Python shell.

wireframe = ExtractEdges(Input=sphere)

Show()

Render()

An Extract Edges filter is added to the sphere source. You should now see
both the wireframe of the original sphere and the shrunken polygons.

Notice that we explicitly set the input for the Extract Edges filter by pro-
viding Input=sphere as an argument to the ExtractEdges function. What
we are really doing is setting the Input property upon construction of the
object. Although it would be possible to create the object with the default
input, and then set the input later, it is not recommended. The problem is
that not all filters accept all input. If you initially create a filter with the

4.4. CREATING A PIPELINE 105

wrong input, you could get error messages before you get a chance to change
the Input property to the correct input.

The sphere source having two filters connected to its output is an example
of fan out in the pipeline. It is always possible to have multiple filters
attached to a single output. Some filters, but not all, also support having
multiple filters connected to their input. Multiple filters are attached to
an input is known as fan in. In ParaView’s Python scripting, fan in is
handled much like fan out, by explicitly defining a filter’s inputs. When
setting multiple inputs (on a single port), simply set the input to a list of
pipeline objects rather than a single one. For example, let us group the
results of the shrink and extract edges filters using the Group Datasets filter.
Type the following line in the Python shell.

group = GroupDatasets(Input=[shrink,wireframe])

Show()

There is now no longer any reason for showing the shrink and extract
edges filters, so let us hide them. By default, the Show and Hide functions
operate on the last pipeline object created (much like the default input when
creating a filter), but you can explicitly choose the object by giving it as an
argument. To hide the shrink and extract edges filters, type the following in
the Python shell.

Hide(shrink)

Hide(wireframe)

Render()

�

In the previous exercise, we saw that we could set the Input property by
placing Input=〈input object〉 in the arguments of the creator function. In
general we can set any of the properties at object construction by specifying
〈property name〉=〈property value〉. For example, we can set both the Theta
Resolution and Phi Resolution when we create a sphere with a line like this.

sphere = Sphere(ThetaResolution=360, PhiResolution=180)

106 CHAPTER 4. BATCH PYTHON SCRIPTING

4.5 Active Objects

If you have any experience with the ParaView GUI, then you should already
be familiar with the concept of an active object. As you build and manipulate
visualizations within the GUI, you first have to select an object in the pipeline
browser. Other GUI panels such as the properties panel will change based
on what the active object is. The active object is also used as the default
object to use for some operations such as adding a filter.

The batch Python scripting also understands the concept of the active
object. In fact, when running together, the GUI and the Python interpreter
share the same active object. When you created filters in the previous section,
the default input they were given was actually the active object. When you
created a new pipeline object, that new object became the active one (just
like when you create an object in the GUI).

You can get and set the active object with the GetActiveSource and Se-

tActiveSource functions, respectively. You can also get a list of all pipeline
objects with the GetSources function. When you click on a new object in
the GUI pipeline browser, the active object in Python will change. Likewise,
if you call SetActiveSource in python, you will see the corresponding entry
become highlighted in the pipeline browser.

Exercise 4.7: Experiment with Active Pipeline Objects

This exercise is a continuation of the exercises in the previous section. How-
ever, if you prefer you can create any pipeline you want and follow along.

Play with active objects by trying the following.

• Get a list of objects by calling GetSources(). Find the sources and
filters you created in that list.

• Get the active object by calling GetActiveSource(). Compare that
to what is selected in the pipeline browser.

• Select something new in the pipeline browser and call GetAc-

tiveSource() again.

• Change the active object with the SetActiveSource function. Observe
the change in the pipeline browser.

4.6. ONLINE HELP 107

�

In addition to maintaining an active pipeline object, ParaView Python
scripting also maintains an active view. As a ParaView user, you should also
already be familiar with multiple views and the active view. The active view
is marked in the GUI with a blue border. The Python functions GetActive-
View and SetActiveView allow you to query and change the active view. As
with pipeline objects, the active view is synchronized between the GUI and
the Python interpreter.

4.6 Online Help

This tutorial, as well as similar instructions in the ParaView book and Wiki,
is designed to give the key concepts necessary to understand and create batch
Python scripts. The detailed documentation including complete lists of func-
tions, classes, and properties available is maintained by the ParaView build
process and provided as online help from within the ParaView application.
In this way we can ensure that the documentation is up to date for whatever
version of ParaView you are using and that it is easily accessible.

The ParaView Python bindings make use of the help built-in function.
This function takes as an argument any Python object and returns some
documentation on it. For example, typing

help(paraview.simple)

returns a brief description of the module and then a list of all the functions
included in the module with a brief synopsis of what each one does. For
example

help(Sphere)

sphere = Sphere()

help(sphere)

will first give help on the Sphere function, then use it to create an object,
and then give help on the object that was returned (including a list of all the
properties for the proxy).

Most of the widgets displayed in the properties panel’s Properties group
are automatically generated from the same introspection that builds the
Python classes. (There are a small number of exceptions where a custom

108 CHAPTER 4. BATCH PYTHON SCRIPTING

panel was created for better usability.) Thus, if you see a labeled widget in
the properties panel, there is a good chance that there is a corresponding
property in the Python object with the same name.

Regardless of whether the GUI contains a custom panel for a pipeline
object, you can still get information about that object’s properties from the
GUI’s online help. As always, bring up the help with the toolbar button.
You can find documentation for all the available pipeline objects under the
Sources Menu, Filters Menu, Readers, and Writers entries in the help Contents.
Each entry gives a list of objects of that type. Clicking on any one of the
objects gives a list of the properties you can set from within Python.

4.7 Reading from Files

The equivalent to opening a file in the ParaView GUI is to create a reader
in Python scripting. Reader objects are created in much the same way as
sources and filters; paraview.simple has a function for each reader type that
creates the pipeline object and returns a proxy object. One can instantatiate
any given reader directly as described below, or more simply call reader =

OpenDataFile(〈filename〉)
All reader objects have at least one property (hidden in the GUI) that

specifies the file name. This property is conventionally called either FileName
or FileNames. You should always specify a valid file name when creating a
reader by placing something like FileName=〈full path〉 in the arguments of
the construction object. Readers often do not initialize correctly if not given
a valid file name.

4.8. QUERYING FIELD ATTRIBUTES 109

Exercise 4.8: Creating a Reader

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to press the button. You will also need the Python shell.
If you have not already done so, open it with Tools → Python Shell from the
menu.

In this exercise we are loading the disk out ref.ex2 file from the Python
shell. Locate this file on your computer and be ready to type or copy it into
the Python shell. We will reference it as 〈path〉/disk out ref.ex2.

Create the reader while specifying the file name by entering the following
in the Python shell.

reader = OpenDataFile(’〈path〉/disk_out_ref.ex2’)
Show()

Render()

�

4.8 Querying Field Attributes

In addition to having properties specific to the class, all proxies for pipeline
objects share a set of common properties and methods. Two very important
such properties are the PointData and CellData properties. These proper-
ties act like dictionaries, an associative array type in Python, that maps
variable names (in strings) to ArrayInformation objects that hold some
characteristics of the fields. Of particular note are the ArrayInformation

methods GetName, which returns the name of the field, GetNumberOfCom-

ponents, which returns the size of each field value (1 for scalars, more for
vectors), and GetRange, which returns the minimum and maximum values
for a particular component.

Exercise 4.9: Getting Field Information

This exercise is a continuation of Exercise 4.8. You will need to finish that
exercise before beginning this one.

To start with, get a handle to the point data and print out all of the point
fields available.

110 CHAPTER 4. BATCH PYTHON SCRIPTING

pd = reader.PointData

print pd.keys()

Get some information about the “Pres” and “V” fields.

print pd[’Pres’].GetNumberOfComponents()

print pd[’Pres’].GetRange()

print pd[’V’].GetNumberOfComponents()

Now let us get fancy. Use the Python for construct to iterate over all of
the arrays and print the ranges for all the components.

for ai in pd.values():

print ai.GetName(), ai.GetNumberOfComponents(),

for i in xrange(ai.GetNumberOfComponents()):

print ai.GetRange(i),

print

�

4.9 Representations

Representations are the “glue” between the data in a pipeline object and a
view. The representation is responsible for managing how a data set is drawn
in the view. The representation defines and manages the underlying render-
ing objects used to draw the data as well as other rendering properties such
as coloring and lighting. Parameters made available in the Display group of
the GUI are managed by representations. There is a separate representation
object instance for every pipeline-object–view pair. This is so that each view
can display the data differently.

Representations are created automatically. You can get the proxy to
the representation objects with the GetRepresentation function. With no
arguments, this function will return the representation for the active pipeline
object and the active view. You can also specify a pipeline object or view or
both.

4.9. REPRESENTATIONS 111

Exercise 4.10: Coloring Data

This exercise is a continuation of Exercise 4.8 (and optionally Exercise 4.9).
If you do not have the exodus file open, you will need to finish that exercise
before beginning this one.

Let us change the color of the geometry to blue and give it a very pro-
nounced specular highlight (that is, make it really shiny). Type in the follow-
ing into the Python shell to get the representation and change the material
properties.

readerRep = GetRepresentation()

readerRep.DiffuseColor = [0, 0, 1]

readerRep.SpecularColor = [1, 1, 1]

readerRep.SpecularPower = 128

readerRep.Specular = 1

Render()

Now rotate the camera with the mouse in the GUI to see the effect of the
specular highlighting.

We can also use the representation to color by a field variable. Enter the
following into the Python shell to color the mesh by the “Pres” field variable.

readerRep.ColorArrayName = ’Pres’

readerRep.LookupTable = \

AssignLookupTable(reader.PointData[’Pres’], ’Cool to Warm’)

Render()

�

112 CHAPTER 4. BATCH PYTHON SCRIPTING

